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For soft matter systems strongly driven by stationary flow, we discuss an extended fluctuation-dissipation
theorem �FDT�. Beyond the linear-response regime, the FDT for the stress acquires an additional contribution
involving the observable that is conjugate to the strain rate with respect to the dissipation function. This
extended FDT is evaluated both analytically for Rouse polymers and in numerical simulations for colloidal
suspensions. More generally, our results suggest an extension of Onsager’s regression principle to nonequilib-
rium steady states.
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I. INTRODUCTION

The fluctuation-dissipation theorem �FDT� holding for all
systems slightly perturbed around their equilibrium state is
one of the cornerstones of equilibrium statistical physics �1�.
Specifically, for a system coupled to a heat bath at tempera-
ture T and setting Boltzmann’s constant to unity throughout
the Rapid Communication,

TRA,h�t − �� = �A�t�Ḃ���� � CAḂ�t − �� �1�

relates the response RA,h�t−�����A�t�� /�h��� of an observ-
able A to a small perturbation h to equilibrium correlations.
Crucially, these correlations involve the same observable A

and the time-derivative Ḃ of another observable that is con-
jugated to the perturbation h in the sense that upon a pertur-
bation the energy U of the system transforms as U�U
−Bh. In a stationary state, due to time-translational invari-
ance both response and correlation function can only depend
on the difference t−��0. The physical picture behind the
FDT can be expressed by Onsager’s regression principle: the
decay of fluctuations created by a small external perturbation
cannot be distinguished from the decay of spontaneous ther-
mal fluctuations.

Beyond the linear-response regime, the FDT in form �1�
no longer holds. However, more than 30 years ago, Agarwal
�2� noted that any stationary Markov process obeys a gener-
alized FDT. This generalized FDT is obtained through linear-
response theory of stochastic processes where the probability
distribution ��t� obeys �t�=L� with some time evolution
operator L �2,3�. In the presence of a perturbation, one can
decompose the evolution operator L=L0+h�L into an un-
perturbed part L0 and a perturbation operator �L. The sta-
tionary solution of the unperturbed system obeys L0�s=0.

The generalized FDT then has the form of Eq. �1� with Ḃ
replaced by B��T�s

−1�L�s. This form appears to be less
useful than its equilibrium counterpart because the new con-
jugate variable B� has no independent physically significant
meaning. In order to equip the involved variables with such a
physical interpretation, we can take the effect of the driving

into account as an additive excess function. The general
structure of such an extended FDT reads

TRA,h�t� = �A�t��Ḃ�0� − B̄�0��� � CAḂ�t� − IAB̄�t� . �2�

Interpreted in the spirit of Onsager’s regression principle, the
FDT now states that the decay of forced fluctuations out of a
nonequilibrium steady state cannot be distinguished from the

decay of spontaneous fluctuations around B̄. Such a state-

ment becomes physically significant only if the variable B̄
carries a transparent physical meaning as an observable. One
purpose of the present Rapid Communication is to show that
for shear flow driven soft matter systems governed by sto-
chastic dynamics, the extended FDT �Eq. �2�� acquires such
a transparent form: for a perturbation caused by a change in

the strain rate the observable B̄ becomes the stress that is
conjugated to the strain rate with respect to the dissipation
function, the mean of which is related to the total entropy
production. Such a characterization generalizes the identifi-

cation of B̄ as the local mean velocity in our previous study
of a driven Langevin-type dynamics with h a small addi-
tional force �4�. A change in the frame of reference from the
laboratory frame to the frame moving with this local mean
velocity then restores the equilibrium form of the FDT �4,5�.
The extended FDT in its integrated form leads to an experi-
mentally tested generalized Einstein relation �6�.

Our approach is complementary to the strategy of intro-
ducing an effective temperature to restore the equilibrium
form �1� of the FDT even in nonequilibrium. The latter ap-
proach has been developed over the last decade for systems
with a small heat flow into the reservoir corresponding to a
small entropy production rate �7–10�. With such an effective
temperature concepts from equilibrium statistical mechanics
could be applied to driven systems even though a full micro-
scopic understanding on the range of validity of this concept
does not seem to have been reached yet.

For the restricted but paradigmatic class of shear driven
systems on which we will focus, quantitative progress has
been achieved using the framework of mode-coupling theory.
This includes the constitutive equation �11� using integration
through transients �12� and an FDT for the diffusion of a
tagged particle �13�. Invariant quantities �14� constitute an
exact result for systems driven through the boundaries with
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an unchanged bulk Hamiltonian, whereas in this Rapid Com-
munication the system is driven through an imposed external
flow.

II. SOFT MATTER UNDER SHEAR

We consider soft matter systems such as colloidal suspen-
sions or polymers that can be described as N interacting
Brownian particles. The system is driven into a nonequilib-
rium steady state by shearing with a strain rate �, resulting in
an imposed flow profile u�r�=�yex of the solvent with unit
vector ex. Picking out the ith particle, the force exerted by all
other particles is Fi�−�iU, where the potential energy
U���=��ij�u�	rij	� is given by the sum over all pairs �ij�, with
rij �ri−r j. The particles interact via an isotropic pair poten-
tial u�r� and the set of particle positions is denoted as �
�
r1 , . . . ,rN� �15�.

The response of an observable A��� to a small time-
dependent variation in the strain rate is RA,��t−� ;��, where
the dependence on � emphasizes that such a response can be
defined for any steady state, not only for �=0 corresponding
to equilibrium. The mean �A�t����d�A������ , t� involves
the time-dependent probability distribution ��� , t�. The per-
turbation operator with respect to a small change in the strain
rate is �L=−�iyi� /�xi. In the linear-response regime, the
FDT

TRA,��t − �;0� = �A�t��xy���� �3�

relates the response to a correlation function involving the
stress

Ḃ = �xy = �
�ij�

xijyij

	rij	
�u�	rij	�

�r
= − �

i=1

N

yiex · Fi �4�

due to particle interactions. The resulting generalized
fluctuation-dissipation relation reads

TRA,��t − �;�� = �A�t��xy
� ���� �5�

with conjugate stochastic variable

�xy
� � T�s

−1�L�s = − �
i=1

N

yiex · T�i ln �s. �6�

Applying the generalized Onsager principle by following Eq.
�2�, we split �xy

� =�xy − �̄xy into the stress �Eq. �4�� and

�̄xy � − �
i=1

N

yiex · Fi, �7�

which involves the thermodynamic force Fi�−�i�U
+T ln �s�. Both stresses have the same mean ��xy�= ��̄xy�. In
equilibrium, �̄xy =0 vanishes and hence Eq. �5� reduces to
Eq. �3� as expected.

We now provide for �̄xy a clear physical meaning con-
necting it to the entropy production caused by the external
flow u�r�. For overdamped dynamics, the dissipation func-
tion �16�

W��,
vi�;�� =
1

2	0
�
i=1

N

�vi − u�ri��2 �8�

is related to the mean total entropy production rate through
T�ṡtot�=2�W� �17�. In a nonequilibrium steady state, the sum

�W�+Ȧ of mean dissipation function and time derivative of
the “dynamical free energy” A��d���U+T ln �� attains a
minimum with respect to the local mean velocities 
vi�,
which then obey vi=u�ri�+	0Fi. A variation in W with re-
spect to the strain rate leads to

�W
��

= −
1

	0
�
i=1

N

�vi − u�ri�� ·
�u�ri�

��
= �̄xy .

In this sense, �̄xy is the variable conjugate to the strain rate �
with respect to the dissipation function in analogy to B being
the variable conjugate to h with respect to the energy.

In the remainder of this Rapid Communication, we con-

centrate on response and correlation functions of A= Ḃ=�xy

− ��xy� and B̄= �̄xy − ��xy�, e.g., C�t�= ��xy�t��xy�0��− ��xy�2.
To ease the notation we drop the subscripts denoting the
observables. We first consider a Rouse polymer which allows
for analytic expressions and then turn to numerical results for
a colloidal suspension with nontrivial interactions.

III. ROUSE POLYMER

Analytic expressions for correlation and response func-
tions can be obtained for systems with quadratic interaction
energies of the form U���= 1

2�
k
q

2 with amplitudes 
q
� of

normal modes. The stress through interactions is �xy
=�
k
x
y
. Inserting the explicit form of �s, Eq. �7� be-
comes

�̄xy = �



k


1 + �

2 ��


2x
y
 + �
y

2� . �9�

A straightforward calculation �18� based on the Smolu-
chowski operator leads to a closed equation of motion for the
correlation function

C�t� = T2�



�1 + �

2�3 + 2t/�
��e−t/�
, �10�

where �
���
 and �
��2	0k
�−1 is half the relaxation time
of the corresponding mode. The response function R�t�
=T�
e−t/�
 is independent of the driving. The excess I=C
−TR��2 is a quadratic function of the shear rate. While such
quadratic behavior is expected universally at small shear
rates, for the Rouse polymer its persistence for large � de-
pends on the Gaussian form of �s.

To obtain the universal expressions for a large number of
modes, we replace the summation by an integration,
�
��1

d
, and set the relaxation times �
=�1 /
2, where the
time scale is determined by the fundamental relaxation time
�1. In addition, we consider integrated response ��t�
��0

t d�R��� and correlation K�t���0
t d�C���. In Fig. 1�a� the

normalized integrated response ��K� is plotted against the
value of the correlation function �parametrized by time�. If
the equilibrium FDT �Eq. �3�� holds then this curve is a
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straight line. For increasing strain rates the deviation, and
therefore the excess, increases. Moreover, for the Rouse
polymer no regimes with constant slope corresponding to an
effective temperature can be discerned.

IV. COLLOIDAL SUSPENSION

We consider N colloidal particles with diameter a sus-
pended in a fluid. We assume the particles to interact through
a repulsive screened Coulomb pair potential,

u�r� = TZ2�B
e�a

�1 + �a/2�2

e−�r

r
, �11�

where �B7 nm is the Bjerrum length in water at room
temperature, Z is the effective surface charge, and �−1 is the
screening length.

Response and correlation functions are obtained through
simulations of a sheared dilute colloidal suspension in a cu-
bic box with side length L=25a and volume V=L3. We are
interested in the bulk behavior, and therefore we employ pe-
riodic Lees-Edwards boundary conditions in the simulation.
The particle number is N=1000 corresponding to a volume
fraction of �0.034. The screening length is set to �−1

=0.15a and the effective surface charge is Z=12000. The
natural time scale �0�a2 /D0 is set by the time a particle
needs to diffuse a distance equal to its diameter. To make
contact with physical units, we choose a=1 	m. In Fig.
2�a�, the mean stress is shown for different Péclet numbers
��0. The straight line indicates the linear-response behavior.
The deviation of the mean stress from this line for large
strain rates corresponds to shear thinning of the suspension
�19�. Mean values and correlation functions are obtained
from single runs with constant strain rate. The response func-
tion is determined as R�t�=�t��xy�t�� /� after a jump ���
+� of the strain rate. Figure 2�b� shows the linear response of
the nonequilibrium steady state corresponding to ��0=0.4. In
the simulation, we have chosen a step of ��0=0.01.

The strong violation of the FDT can been seen in Figs.
3�a�–3�c�, where response and correlation functions are plot-
ted as functions of time for equilibrium ��=0� and two
driven nonequilibrium steady states. For increasing strain
rate, the deviation of the correlation function C�t� from the
response function R�t� becomes larger, too. In Fig. 1�b�, the
normalized integrated response ��K� is shown as function of

the integrated correlations. The small deviation between re-
sponse and correlation function in Fig. 3�a� is responsible for
the fact that in Fig. 1�b� the equilibrium curve for �=0 lies
slightly above the expected straight slope. Overall, the struc-
ture is comparable to the Rouse polymer in Fig. 1�a�. Fol-
lowing Ref. �7�, one might even be tempted to identify a
linear slope in the intermediate range corresponding to an
effective temperature even though this is not the focus of the
present work.

V. APPROXIMATE EXCESS FUNCTION

So far, we have obtained the excess as difference I=C
−TR. In principle, we need the complete distribution �s��� to
determine I independently using Eq. �7�. Such complete in-
formation is, however, neither available experimentally nor
in computer simulations. Hence, approximate schemes will
become important in future applications of the extended
FDT. As a first step, we discuss here an approximation to
�̄xy. Since the suspension is homogeneous, the one-point
density ��1��r1�=�=N /V is constant and the two-point den-
sity,

��2��r1,r2� = N�N − 1�� dr3 ¯ drN�s��� � �2g�r� ,

becomes a function of the displacement r�r1−r2 only. The
factor N�N−1� accounts for the possible permutations of the
identical particles. The pair distribution g�r� as obtained
from the simulation for the parameters introduced above is
shown in Fig. 2�c� �for hard spheres, cf. Ref. �20��.

We approximate the stationary distribution as �̃s���
=exp
−
��ij�w�rij� /T� with potential of mean force w�r�
�−T ln g�r� �19�. This approximation effectively factorizes
the probability distribution by using the correct pair correla-
tions and neglecting correlations between three and more
particles. It is motivated by the fact that the stress is deter-
mined by pair interactions only. In the parameter range we
have studied we found 
0.5. Inserting the pair approxima-
tion into Eq. �6� leads to

�̃xy
� = 
�

�ij�
yij

�w�rij�
�xij

+ const. �12�
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FIG. 1. �Color online� Integrated response � vs integrated cor-
relation function K for �a� a Rouse polymer and �b� a colloidal
suspension �see main text�. Both functions have been normalized by
K�K�t→�. The straight solid line corresponds to the equilib-
rium FDT �Eq. �3��.

0.07

0.08

0.38 0.40 0.42

<
σ x

y>
/V

γτ0

b)

0.00

0.05

0.10

0.15

0.20

0.00 0.20 0.40 0.60 0.80 1.00

<
σ x

y>
/V

a)

0.0

0.5

1.0

1.5

2.0

2.5

-6 -4 -2 0 2 4 6

x [units of a]

-6

-4

-2

0

2

4

6

y
[u

ni
ts

of
a]

c)

FIG. 2. �Color online� �a� Mean stress ��xy� of a colloidal sus-
pension vs the strain rate �. The solid line indicates the linear-
response regime. �b� Mean stress in the vicinity of ��0=0.4. The
solid line is a fit indicating the linear response of the nonequilib-
rium steady state. The error bars have been obtained as standard
deviation by splitting the trajectory into eight segments. �c� Pair
distribution function g�r� for ��0=1 in the xy plane with z=0. For
parameters, see main text.
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The constant offset is adjusted for every strain rate such that
��̃xy

� �=0. We also employ a cutoff taking into account only
neighboring particles within the first shell. Using this ap-
proximation, we can then both calculate the response func-
tion through Eq. �5� and access the stress �Eq. �7�� in the
simulation. In Figs. 3�a�–3�c� the approximated response

function R̃�t� is shown together with R�t� and the correlation
functions. In Fig. 3�d�, both the integrated excess �0

d�I��� as
well as the integrated approximate excess based on Eq. �12�
are shown for different strain rates. For moderate to large
strain rates, the pair approximation works quite well. In the
limit of vanishing strain rate, even though the volume frac-
tion of the colloidal particles is low, the potential of mean
force still deviates from the pair potential resulting in a
breakdown of this type of approximation for equilibrium.

VI. CONCLUDING PERSPECTIVE

For strongly driven soft matter systems, we have dis-
cussed an extended FDT. Beyond the analytical and numeri-
cal data for two case studies, our general insight is twofold.
First, beyond the linear-response regime, the FDT acquires
an additive contribution which involves the stress that in the
dissipation function is conjugate to the strain rate. This result

suggests more generally that the nonequilibrium form of the
FDT involves the observable that is conjugate to the pertur-
bation in the dissipation function. Such a scheme could be
analogous to the pairing of observables conjugate with re-
spect to energy in the equilibrium form of the FDT. Second,
the additive contribution allows an interpretation in the spirit
of Onsager’s regression principle: the decay of a spontaneous
fluctuation around a nonequilibrium steady state cannot be
distinguished from the decay of a fluctuation forced by a
small external perturbation. Whether these observations can
be generalized to an even larger class of nonequilibrium sys-
tems remains to be investigated both by further case studies
and, more ambitiously, by an attempt to formulate a more
formal theory for nonequilibrium steady states along these
lines.
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equilibrium and ��b�–�c�� two different nonequilibrium steady states. �d� Comparison of integrated excess �through I=C−TR� and integrated
approximated excess �using Eq. �12�� vs strain rate.
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